

Overview of the Immune System

Dr.Eman Tariq Ali

(Immunity)

College of Pharmacy-Dep. Of Clinical Laboratory Sciences

2018-2019

Lecture 1.

Immunology Study of the components and function of the immune system

□Immune System
 Molecules, cells, tissues and organs which provide non-specific and specific protection against
 ✓ Microorganisms
 ✓ Microbial toxins
 ✓ Tumor cells
 Crucial to human survival

Immunity

the state of protection from infectious disease has both a less specific and more specific component

Immune response

Innate (non-specific) Adaptive (specific) Primary Secondary

Acquisition of Immunity Natural Artificial

To protect humans from

Pathogenic microorganisms (Pathogens) Microorganisms capable of causing <u>infection</u> and/or disease

Infection

Ability of pathogen to enter host, multiply and stimulate an immune response

Disease

Clinical manifestations associated with infection

Immunity

Immunity is body's ability to resist or eliminate potentially harmful foreign materials or abnormal cells

Consists of following activities:

- Defense against invading pathogens (viruses & bacteria)
- 2. Removal of 'worn-out' cells (e.g., old RBCs) & tissue debris (e.g., from injury or disease)
- 3. Identification & destruction of abnormal or mutant cells (primary defense against cancer)
- 4. Rejection of 'foreign' cells (e.g., organ transplant)

□Inappropriate responses:

Allergies - response to normally harmless substances Autoimmune diseases

Interactions between the two systems

Body Defenses

Innate (non-specific) Immunity

<u>4 barriers to infection</u>:

✓ Anatomic
✓ Physiologic
✓ Phagocytic
✓ Inflammatory

Innate (non-specific) Immunity

- 1) <u>Anatomic</u>
 - skin -> epidermis w/ keratin
 mucus memb. ->inner surfaces
- 2) <u>Physiological</u> temperature, pH, soluble subst.
- 3) <u>Phagocytes</u>

blood monocytes, tissue MØ, and neutrophils

- 4) <u>Inflammatory response</u> triggered by wound/foreign particle 5 Cardinal signs reflect 3 major events of inflam response:
 - -vasodilation
 - >capillary permeability-influx of phagocytes

External defenses

First line of defense

- Non-specific defenses are designed to prevent infections by viruses and bacteria. These include:
 - Intact skin
 - Mucus and Cilia
 - Phagocytes

Anatomical Barriers - Mechanical Factors

Skin

flap!

flap!

Mucociliary escalator

 Flushing action of saliva, tears, urine

Role of skin

- Dead skin cells are constantly sloughed off, making it hard for invading bacteria to colonize.
- Sweat and oils contain anti-microbial chemicals, including some antibiotics.

Role of mucus and cilia

- Mucus contains lysozymes, enzymes that destroy bacterial cell walls.
- The normal flow of mucus washes bacteria and viruses off of mucus membranes.
- Cilia in the respiratory tract move mucus out of the lungs to keep bacteria and viruses out.

© 2011 Pearson Education, Inc.

Anatomical Barriers – Chemical factors

Peptides in sweat

Antimicrobial

HCI in stomach

Lysozyme in tears /saliva

Internal defenses

>Phagocytic Cell

Inflammatory immune responses

>Antimicrobial protein

Internal Cellular and Chemical Defenses

- Internal cellular defenses depend mainly on **phagocytosis**.
- **Phagocytes** are types of white blood cells that:
 - Ingest invading microorganisms.
 - Initiate the inflammatory response.

Phagocytic Cells

- Macrophages, a specific type of phagocyte, can be found migrating through the body.
 - Also found in various organs of the lymphatic system.

Phagocytic Cells

 Phagocytes attach to their prey via surface receptors and engulf them, forming a vacuole that fuses with a lysosome.

Role of phagocytes

- Phagocytes are several types of white blood cells (including macrophages and neutrophils) that seek and destroy invaders.
 Some also destroy damaged body cells.
- Phagocytes are attracted by an inflammatory response of damaged cells.

Inflammatory Response

• In local **inflammation**, **histamine** and other chemicals released from injured cells promote changes in blood vessels that allow more fluid, more phagocytes, and antimicrobial proteins to enter the tissues.

Role of inflammation

- Inflammation is signaled by mast cells, which release histamine.
- Histamine causes fluids to collect around an injury to dilute toxins. This causes swelling.
- The temperature of the tissues may rise, which can kill temperature-sensitive microbes.

Ouch!

Copyright © 2005 Pearson Prentice Hall, Inc.

Internal defenses

1-CELLULAR

What happens when a TLR bind to a microbe

Internal Defences

2-Extra cellular

- Cytokines
- Complement

Antimicrobial Proteins

- About 30 proteins make up the **complement system**, which can :
- 1. cause lysis of invading cells and
- 2. help trigger inflammation.
- Interferon's provide :
- 1. innate defense against viruses and
- 2. help activate macrophages.

What to Interleukins do?

Proliferation of immune

cells

Inflammation

Interleukins

Increase antibody production

Activation of immune cells

Complement proteins: role in innate immune system

- You wake up one morning with a stuffy nose, slight fever, and fatigue. Do you have a cold or the flu? Or are they the same?
- Should you go to your doctor for an antibiotic? Why or why not?

The not-so-common cold

- A "cold" is an infection of the mucus membranes of the respiratory tract by a rhinovirus.
- Over 100 rhinoviruses

 have been identified,
 which is one reason why
 we don't become immune
 to "the cold."

Virus vs. Bacteria

- Colds and influenza are caused by viruses.
- Viruses are which is a nonliving particle that contains genetic material, and hijacks your cells to reproduce.
- Viruses cannot be "killed" with antibiotics.

Rhinovirus

Influenza virus

Virus vs. Bacteria

- Bacteria are living organisms that have a metabolism, have DNA, and can reproduce on their own.
- Bacteria can be killed with antibiotics because these substances target key processes in bacteria, such as production of the bacterial Strepto cell wall.

E. coli

Streptococcus

THANK YOU

